Abstract

Increasingly strict constraints on the boron concentration for safe drinking and irrigation water present a tremendous challenge for the design of seawater reverse osmosis (RO) desalination systems. This work presents an optimization study of a seawater reverse osmosis RO network with permeate split (PS) design under boron concentration restrictions. Front part permeates with better quality and higher flux are sent directly to the product, and back part permeates are reprocessed in pass 2 with high pH value. The irreversible thermodynamic model is employed to describe the membrane transport behavior of boron. Constraints for the system flow and operation conditions are added to guarantee safe operating of the RO system. Both single-product and two-product RO systems are optimized for different types of feed seawater. Results show that the PS design is mainly dominated by the boron constraints, while the system recovery is mainly controlled by the feed salt concentration. Due to the upper bound of pH for p...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call