Abstract

The aim of this study was to scale-up and optimize the chitosan (CS) microparticles (MPs) from 1× batch (41–85 mg) to 4× batch (270–567 mg) to be used in bone regeneration. The MPs used in the present study were prepared by double emulsification technique using CS as a base material under physiologically friendly conditions throughout the process. Structural integrity of MPs was improved creating cross-links between amine groups in CS and phosphate groups in tripolyphosphate (TPP) which has been used as an ionic cross-linking agent. The cross-linking density was varied using different amounts of TPP to CS such as 0%, 8%, 32%, 64% and 110% (w/w). The CS MPs were approximately spherical in shape with a size of 30–50 µm according to scanning electron microscopy results. X-ray diffraction data revealed having TPP in the CS MPs. The evidence of ionic cross-links in the CS MPs was analyzed using Fourier Transform Infra Red. When we scaled-up the yield of MPs, we investigated that 64% TPP cross-linking density provided the best quality MPs. In addition, those MPs provided the yield from 75 mg to 310 mg when scaled up from 1× to 4× batch, respectively. The MPs developed have a great potential to be used as an injectable scaffold for bone regeneration including orthopedic and craniofacial applications using minimally invasive conditions compared with conventional three-dimensional scaffolds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call