Abstract
In this paper, for a system incorporating a large number of antennas, we address the optimal space–time coding of multimedia scalable sources, which require unequal target error rates in their bitstream. First, in terms of the number of antennas, we analyze the behavior of the crossover point of the outage probability curves for the vertical Bell Laboratories space–time (V-BLAST) architecture with a linear or a maximum-likelihood receiver, and orthogonal space–time block codes (OSTBCs). We prove that, as the number of antennas increases with the transmission data rate fixed, the crossover point in outage probability monotonically decreases. This holds for any data rate employed by the system and is valid over propagation channels such as spatially correlated Rayleigh or Rician fading channels, as well as independent and identically distributed Rayleigh channels. We next show that, over such propagation channels with a large number of antennas, those analytical results can be used to simplify the computational complexity involved with the optimal space–time coding of a sequence of scalable packets, with no performance degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.