Abstract

In this paper, Desirability Optimization Methodology (DOM) is employed to achieve optimum sand bentonite mixture (SBM) based on multiple antagonist macro-geotechnical responses of the compacted SBM prepared using poorly graded sand with the mean grain size around 0.2 mm and bentonite with plasticity index around 157% for the stable engineered barriers (EBs). For this purpose, varying mix designs of SBM compacted at compaction energy of 2,700 kN-m/m3 are initially tested to determine their mechanical properties, volumetric-change behavior, and hydraulic conductivity. The unconfined compressive strength, cohesion, angle of internal fiction, swell pressure, compression index, and hydraulic conductivity are taken as the geotechnical design parameters for the SBM. Mathematical models are developed and statistically validated for these design parameters using sand content (SC) and bentonite content (BC) as the predictors. In addition, models are also developed to predict compression curves for compacted SBMs. Moreover, microstructural evaluation is conducted through scanning electron microscope (SEM) analysis to determine the SBM having a desirable microstructure for stable EB. It is observed that a major shift in the microstructure from medium pores to micro-pores occurs for the BC between 20% and 30%. Afterward, optimization of SBM is carried out by integrating developed models for the geotechnical design parameters in a desirability function (D) algorithm, which is subsequently simulated by setting maximization of strength and minimization of swell pressure, compressibility and hydraulic conductivity of compacted SBM as the goals. A reasonably high D-value is achieved for the SBMs having SC:BC in a range of 74:26 to 78:22 with the highest at 75.63:24.37 against the set goals. This study manifests an effective and pragmatic strategy for designing the SBM for a stable EB considering its antagonist hydraulic, volumetric change, and mechanical responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call