Abstract

This research presents an optimization technique for route planning and exploration in unknown environments. It employs the hybrid architecture that implements detection, avoidance and planning using autonomous agents with coordination capabilities. When these agents work for a common objective, they require a robust information interchange module for coordination. They cannot achieve the goal when working independently. The coordination module enhances their performance and efficiency. The multi agent systems can be employed for searching items in unknown environments. The searching of unexploded ordinance such as the land mines is an important application where multi agent systems can be best employed. The hybrid architecture incorporates learning real time A* algorithm for route planning and compares it with A* searching algorithm. Learning real time A* shows better results for multi agent environment and proved to be efficient and robust algorithm. A simulated ant agent system is presented for route planning and optimization and proved to be efficient and robust for large and complex environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.