Abstract

The choice of ribonucleic acid (RNA) isolation protocol coupled with modifications to RNA extraction and detection procedures may result in a more reliable method to detect gene expression in archived temporal bones. A large number of archival temporal bones exist. Retrospective analysis of these specimens using techniques of RNA extraction will greatly enrich our understanding of the pathophysiology of specific otologic diseases. However, archival human temporal bones are aged and embedded in paraffin or celloidin, rendering isolation and manipulation of nucleic acid in preserved specimens difficult, especially as it pertains to RNA degradation. Despite some reports of moderate success in the recent past, RNA isolation and gene expression using polymerase chain reaction (PCR) analysis continues to be challenging and unreliable. Archival guinea pig temporal bone specimens were used to develop and optimize a protocol for RNA extraction and gene expression analysis using PCR and quantitative PCR methods. The genes amplified comprise housekeeping genes and genes associated with the glutamate pathway. Archival celloidin-embedded guinea pig temporal bones were collected from the senior author's collection of experimental hydropic inner ear specimens. RNA from this tissue was extracted using the protocol described previously in 16animals and using a modified trizol extraction technique in 10 animals. Gene expression analysis was performed on the extracted RNA. Analysis included two housekeeping genes, GAPDH and 18S, as well as three mediators of the glutamate pathway, glutamate aspartate transporter, glutamate synthetase, and inducible nitric oxide synthase. Compared with the standard extraction protocol, the trizol-based extraction technique showed greater reliability and reproducibility of RNA detection. The housekeeping gene GAPDH or 18S was detected in 7 of 36 attempts with the standard protocol versus 9 of 9 using the modified extraction method (P < 0.001). The gene of interest, glutamate aspartate transporter, was detected in 3 of 26 attempts with the standard protocol versus 12 of 13 attempts using the modified extraction method (P < 0.001). Quantification of messenger RNA levels was then achieved using quantitative PCR methods. Improved reliability for detection of gene expression and demonstration of reproducibility were accomplished by modification of RNA extraction technique and standard reverse transcriptase PCR protocol. In addition, we also showed that gene expression from archival material can be quantified by real-time PCR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call