Abstract
An optimization of reverse osmosis (RO) networks for seawater desalination with spiral-wound modules (SWM) was presented in this work. The membrane transport model, which was based on the mass and momentum transport equations, took into consideration the longitudinal variation of the velocity, the pressure, and the salt concentration in the membrane modules. The pressure exchanger (PX) was included in the RO superstructure, and salinity increase caused by volumetric mixing in the PX was considered. The results obtained from the presented model were compared with the actual plant operational data from literature and found to be in good agreement with relative errors of 0.81%∼2.15% and 0.01%∼0.09%, in terms of water recovery and salt rejection, respectively. The optimum design problem was formulated as a mixed integer nonlinear programming (MINLP) problem. The variation of feed salinity was studied using the RO networks model. For the feed concentration higher than 32 kg/m3, one-stage RO system is favored. ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.