Abstract

Due to their adaptability, Unmanned Aerial Vehicles (UAVs) play an essential role in the Internet of Things (IoT). Using wireless power transfer (WPT) techniques, an UAV can be supplied with energy while in flight, thereby extending the lifetime of this energy-constrained device. This paper investigates the optimization of resource allocation in light of the fact that power transfer and data transmission cannot be performed simultaneously. In this paper, we propose an optimization strategy for the resource allocation of UAVs in sensor communication networks. It is a practical solution to the problem of marine sensor networks that are located far from shore and have limited power. A corresponding system model is summarized based on the scenario and existing theoretical works. The minimum throughput-maximizing object is then formulated as an optimization problem. As swarm intelligence algorithms are utilized effectively in numerous fields, this paper chose to solve the formed optimization problem using the Harris Hawks Optimization and Whale Optimization Algorithms. This paper introduces a method for translating multi-decisions into a row vector in order to adapt swarm intelligence algorithms to the problem, as joint time and energy optimization have two sets of variables. The proposed method performs well in terms of stability and duration. Finally, performance is evaluated through numerical experiments. Simulation results demonstrate that the proposed method performs admirably in the given scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.