Abstract

BackgroundAs a non-modeled information theoretical measure, the transfer entropy (TE) could be applied to quantitatively analyze the linear and nonlinear coupling characteristics between two observations. However, the parameters selection of TE (the parameters used in state space reconstruction and estimating Shannon entropy) has a serious influence on the accuracy of its results. New MethodIn this study, the hybrid particle swarm optimization (HPSO) was applied to improve the accuracy of TE by optimizing its parameters. In HPSO, the TE calculation and significant analysis were integrated into the fitness function, and the optimal parameters group within the parameter space could be automatically found through an iteration process. ResultsThe TE results computed under the parameters optimized by HPSO (HPSO-TE), was assessed with a numerical non-linear model, the neural mass model and the recorded electroencephalogram (EEG) and electromyogram (EMG) signals. Compared with TE, HPSO-TE could reduce the ‘false positive’ in non-linear model, and ‘spurious coupling’, i.e. two nonzero TEs for unidirectionally coupled systems, especially when coupling strength was weak. The robustness against noise and long time-delay was improved. Moreover, the experimental data analysis showed HPSO-TE revealed the dominant direction (EEG → EMG) in corticomuscular coupling, and had higher values than TE which showed the same dominant direction. Comparison with Existing MethodThe implication of HPSO improved the accuracy of TE in estimating the coupling strength and direction. ConclusionsThe efficiency of TE could be improved by HPSO for estimating coupling relationships, especially for weakly coupled, strong noisy and long time-delay series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.