Abstract

A framework based on Bayesian statistics and information theory is developed to optimize the design of surface-sensitive reflectometry experiments. The method applies to model-based reflectivity data analysis, uses simulated reflectivity data and is capable of optimizing experiments that probe a sample under more than one condition. After presentation of the underlying theory and its implementation, the framework is applied to exemplary test problems for which the information gain ΔH is determined. Reflectivity data are simulated for the current generation of neutron reflectometers at the NIST Center for Neutron Research. However, the simulation can be easily modified for X-ray or neutron instruments at any source. With application to structural biology in mind, this work explores the dependence of ΔH on the scattering length density of aqueous solutions in which the sample structure is bathed, on the counting time and on the maximum momentum transfer of the measurement. Finally, the impact of a buried magnetic reference layer on ΔH is investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.