Abstract

The complex formed by the cyclin-dependent kinase A (CDKA) and cyclin D is responsible for the G1-S transition in the plant cell cycle. Maize (Zea mays L) CDKA; 1 and CycD6; 1 were cloned and expressed in E. coli. The present study describes the optimization of both proteins production using a statistical approach known as response surface methodology (RSM). The experimental design took into account the effects of four variables: optical density of the culture (OD600) before induction, isopropyl β-d-1-thiogalactopyranoside (IPTG) concentration, post-induction temperature, and post-induction time. For each protein, a 24 full factorial central composite rotary design for these four independent variables (at five levels each) was employed to fit a polynomial model; which indicated that 30 experiments were required for this procedure. An optimization of CDKA; 1 and CycD6; 1 production levels in the soluble fraction was achieved. Protein conformation and stability were studied by circular dichroism and fluorescence spectroscopy. Finally, in vitro Cyc-CDK complex formation and its kinase activity were confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.