Abstract

This study aimed to enhance the performance of Ag-stabilized high-temperature superconducting (HTS) tapes with a focus on reducing magnetization losses. Two approaches were employed: dividing the tapes into narrower widths and introducing striation at the level of the superconducting layer. The process of laser ablation proved to be an effective method for implementing these modifications. The quality of the cut edges and grooves was assessed using scanning electron microscopy. To evaluate the electrical properties, measurements were conducted on the critical current and magnetization loss in samples at different stages: in their initial state, after cutting, and after the striation process. Of the two modifications, the striation process more effectively reduced the AC losses in the HTS tapes, approximately by one order of magnitude. The retention of critical current remained high after cutting, but varied with the number of created filaments after the striation process. Subsequently, a short cable was wound from the cut and striated HTS tape. This cable demonstrated a remarkable sixfold reduction in AC losses compared to the initial HTS tape.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.