Abstract

The bifacial p-type silicon (p-Si) passivated emitter and rear cells (PERCs) are predicted to dominate the industrial bifacial solar cells. In this work, we have investigated the impact of different rear surface morphologies on the electrical performance of bifacial PERCs with both five-busbar (5BB) and nine-busbar (9BB) grid design. The passivation and optical properties with differing rear surfaces are evaluated on semi-device structures. The depth of local aluminum back surface field is hardly affected by the rear surface morphology. The calculated efficiency loss analysis indicates that the negative electrical impact with enlarged rear surface area is more serious for rear side than that of front side. The batch conversion efficiency of 9BB bifacial PERCs increases by 0.2%–0.3% comparing to 5BB ones depending on the rear surface roughness. Consequently, a highest front-side average efficiency of 22.57%, with a champion efficiency of 22.75%, has been achieved for 9BB bifacial p-Si PERCs with a nearly planar rear surface. A highest bifaciality of 78.7% is realized for both 5BB and 9BB bifacial PERCs with the roughest rear surface. We have further simulated the relative enhancement of electric generation to compare the performance of bifacial PERCs in practical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call