Abstract

Reaming is one of the finishing processes that has been widely applied in automotive industry. Reaming parameters were evaluated and optimized based on multiple performance characteristics including tool wear and hole quality. Taguchi’s L16, 4-level, 2-factor orthogonal array (OA) was conducted for this test. It was shown that crater wear and flank wear were seen on the tool surface. Furthermore, the crater wear was also of major significance. Hole quality was discovered to be mostly dependent upon cutting speed and feed rate. TiAlN coated carbide reamer shows the best performance with respect to the tool wear as well as hole quality. Grey relational analysis used as a multiple-response optimization technique found that feed rate was the more influential parameter than cutting speed. The goal of the experimental results was to obtain both minimum diametral error and the value of surface roughness by adopting the optimal combination of the reaming parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.