Abstract

Atom-transfer radical polymerization (ATRP) is a powerful reversible-deactivation radical polymerization technique that provides polymers with several macromolecular architectures. Global optimization of this type of system is often difficult due to the mathematical models complexity. Based on that, the purpose of this paper is to provide a simplified optimization method to determine the best reaction conditions in bulk styrene ATRP initiated by 2,2,2-tribromoethanol. A kinetic model, with experimental validation, was used to generate the response variables in a full 23 factorial design. Thus, an easy statistic modeling was employed to optimize reaction conditions. It was also performed a traditional global dynamic optimization to prove that our approach could be accomplished without considerable errors. Finally, we demonstrated that the optimum conditions can be obtained in an easy and uncomplicated way, allowing extend it to any polymeric system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call