Abstract
R-(+)-limonene is an abundant and non-expensive by-product of the citrus industry and is, therefore, a suitable starting material for the production of natural flavor and fragrance compounds. The biotransformation of R-(+)-limonene to R-(+)-alpha-terpineol by Fusarium oxysporum 152b has already been reported, although the influence of the main process parameters on the production has not yet been evaluated. In this paper, a Plackett-Burman screening design was used to define the effects of the medium composition (glucose, peptone, yeast extract, malt extract and pH), the presence of a co-substrate (biosurfactant), the cultivation conditions (temperature, agitation), the substrate concentration and the inoculum/culture medium ratio on the absolute amount of R-(+)-alpha-terpineol resulting from this biotransformation. The process conditions were further optimized applying response surface methodology (RSM). The volatiles were extracted using a SPME device and were subsequently quantified by GC-FID and identified by GC-MS. The best results were obtained using 0.5% (v/m) R-(+)-limonene in pure distilled water as the culture medium with an inoculum/culture medium ratio of 0.25 (m/m) and 72 h cultivation at 26 degrees C/240 rpm. Under these conditions the concentration of R-(+)-alpha-terpineol in the culture medium reached 2.4 g L(-1), a production almost six times greater than in earlier trials. The presence of a biosurfactant (0-500 mg L(-1)) did not significantly increase the yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Industrial Microbiology & Biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.