Abstract

Stellite 6 is a cobalt-base alloy which is resistant to wear and corrosion and retains these properties at high temperatures. The exceptional wear resistance of Stellite 6 is mainly due to the unique inherent characteristics of the hard carbides dispersed in a Co–Cr alloy matrix. In this study, pulsed tungsten inert gas (TIG) cladding process was carried out to deposit Stellite 6 on plain carbon steel plate. The beneficial effects of this cladding process are low heat input, low distortion, controlled weld bead volume, less hot cracking tendency, less absorption of gases by weld pool and better control of the fusion zone. The dilution effect is a key issue in the quality of cladded layers and, in this regard, the pulsed current tungsten inert gas (PCTIG) was performed to decrease excess heat input and melting of substrate. This paper deals with the investigation of the hardness and dilution ratio by experimental study and mathematical modeling. The experiments were conducted based on four-factor, five-level central composite rotatable design. The second-order regression method was developed to study the correlations. The developed models were checked for their adequacy and significance by ANOVA analysis and confirmation tests were carried out to check the accuracy of predicted values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.