Abstract

Immunogold labeling allows localization of proteins at the electron microscopy (EM) level of resolution, and quantification of signals. The present paper summarizes methodological issues and experiences gained from studies on the distribution of synaptic and other neuron-specific proteins in cell cultures and brain tissues via a pre-embedding method. An optimal protocol includes careful determination of a fixation condition for any particular antibody, a well-planned tissue processing procedure, and a strict evaluation of the credibility of the labeling. Here, tips and caveats on different steps of the sample preparation protocol are illustrated with examples. A good starting condition for EM-compatible fixation and permeabilization is 4% paraformaldehyde in PBS for 30 min at room temperature, followed by 30 min incubation with 0.1% saponin. An optimal condition can then be readjusted for each particular antibody. Each lot of the secondary antibody (conjugated with a 1.4 nm small gold particle) needs to be evaluated against known standards for labeling efficiency. Silver enhancement is required to make the small gold visible, and quality of the silver-enhanced signals can be affected by subsequent steps of osmium tetroxide treatment, uranyl acetate en bloc staining, and by detergent or ethanol used to clean the diamond knife for cutting thin sections. Most importantly, verification of signals requires understanding of the protein of interest in order to validate for correct localization of antibodies at expected epitopes on particular organelles, and quantification of signals needs to take into consideration the penetration gradient of reagents and clumping of secondary antibodies.

Highlights

  • Introduction the development of super-resolution microscopy at the light microscopy (LM) level enabled the observation of suborganellar localization of molecules [1, 2], electron microscopy (EM) still offers higher resolution images to match the molecular localization at ultrastructural level

  • Tao‐Cheng et al Mol Brain (2021) 14:86 synaptic and other neuronal proteins. This pre-embedding method can be achieved by any EM laboratory with standard technique [9] without specialized low temperature equipment required for cryo-thin sectioning [11], or for rapid freezing and freeze-substitution essential for post-embedding methods [10]

  • Contrary to conventional assumption, quality of structural preservation of PF-fixed samples can be reasonably high if samples are optimally processed

Read more

Summary

Introduction

The development of super-resolution microscopy at the light microscopy (LM) level enabled the observation of suborganellar localization of molecules [1, 2], electron microscopy (EM) still offers higher resolution images to match the molecular localization at ultrastructural level. Tao‐Cheng et al Mol Brain (2021) 14:86 synaptic and other neuronal proteins. This pre-embedding method can be achieved by any EM laboratory with standard technique [9] without specialized low temperature equipment required for cryo-thin sectioning [11], or for rapid freezing and freeze-substitution essential for post-embedding methods [10]. This pre-embedding method is the easiest to try among the various techniques

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call