Abstract

The optimization of properties of lightweight fly ash aggregates for suitability in high-strength lightweight fly ash concrete production was investigated using response surface methodology (RSM). Design-Expert software was used to establish the design matrix and to analyze the experimental data. The relationships between the sintering parameters (temperature, binder content and binder type) and experimentally obtained three responses (specific gravity, water absorption and crushing strength) were established. Also, the optimization capabilities in Design-Expert software were used to optimize the sintering process. Historical data design technique under RSM was performed to optimize the input parameter interactions which showed the best conditions for preparation of fly ash pellets. According to the obtained results, the developed models are statistically accurate and can be used for further analysis. The experimental values agreed with the predicted ones, thus indicating suitability of the model employed and the success of RSM in optimizing the sintering conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.