Abstract

The properties of oak heat treated at temperatures of 160–220 °C, oxygen concentrations of 2–10 %, steam pressures of 0.1–0.4 MPa and treatment time of 2–4 h were investigated. Although modulus of elasticity (MOE), modulus of rupture (MOR) and equilibrium moisture content (EMC) of the heat-treated wood (HTW) were reduced, the value of \( \Updelta E^{*} \) was increased, and the dimensional stability [anti-swelling efficiency in radial (ASE-R), anti-humidity efficiency (AHE)] was improved considerably. Six regression equations (temperature, oxygen concentration, steam pressure and time as functions of MOE, MOR, ASE-R, AHE, EMC and \( \Updelta E^{*} \)) were developed for the estimation and a nonlinear programming model was derived with operation research theory to obtain the most desirable HTW properties under some production constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.