Abstract

Sequential optimization strategy based on statistical experimental design and one-factor-at-a-time (OFAT) method were employed to optimize the process parameters for the enhancement of silver nanoparticles (AgNPs) production through biological synthesis using Pycnoporus sanguineus. Based on the OFAT method, three significant components influencing the size of AgNPs produced were identified as AgNO3 concentration, incubation temperature, and agitation speed. The optimum values of these process parameter for the synthesis of AgNPs were determined using response surface methodology (RSM) based on Box-Behnken design. The validity of the model developed was verified, and the statistical analysis showed that the optimum operating conditions were 0.001 M of AgNO3, 38°C, and 200 rpm with the smallest AgNPs produced at 14.86 nm. The disc diffusion method also suggested that AgNPs produced using optimum conditions have higher antimicrobial activity compared to the unoptimized AgNPs. The present study developed a robust operating condition for the production of AgNPs by P. sanguineus, which was 8.6-fold smaller than that obtained from un-optimized conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.