Abstract

Abstract A methodology was exhibited to create the experimental model for assessing the Ultimate Tensile Strength of AA 5083-O aluminum compound which is broadly utilized as a part of boat building industry by Friction Stir Welding (FSW). FSW process parameters, such as: tool rotational speed, welding speed, and axial force were optimized for better results. FSW was completed considering three-component 3-level Box Behnekn Design. Response surface Methodology (RSM) was implemented to obtain the relationship between the FSW process parameters and ultimate Tensile Strength. Analysis of Variance (ANOVA) procedure was utilized to check the aptness of the created model. The FSW process parameters were additionally streamlined utilizing Response Surface Methodology (RSM) to augment tensile strength. The joint welded at a rotational speed of 1100 rpm, a welding speed of 75 mm/min and a pivotal energy of 2.5 t displays higher tensile strength compared with different joints in comparison with other joints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call