Abstract
In this paper, an effort is made to determine the optimized parameters in laser welding of Hastelloy C-276 using Artificial Neural Network (ANN) and Genetic Algorithm (GA). CO2 Laser welding was performed on a sheet of thickness 1.6[Formula: see text]mm based on Taguchi L27 orthogonal array. Laser power, welding speed and shielding gas flow rate were chosen as input parameters and Bead width, depth of Penetration and Microhardness were measured for assessing the weld quality. ANN was applied for modeling the welding process parameters i.e. heat input, welding speed and gas flow rate. Various learning algorithms such as Batch Back Propagation (BBP), Incremental Back Propagation (IBP), Quick Propagation (QP) and Levenberg–Marquardt (LM) were comprehensively tested for estimating the output parameters and a comparison was also made among them, with respect to prediction accuracy. BBP method was found to be the best learning algorithm. Experimental validation test was performed based on the ANN and GA predicted optimized responses and this welding input parameters provided satisfactory weld metal characteristics in terms of penetration depth, bead width and microhardness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.