Abstract

The unidirectional solidification process of magnesium alloy needs to establish a specific temperature gradient in casting mold, the direction of crystal growth and heat flow are in the opposite direction in the unidirectional solidification. The process can better control the grain orientation, and eliminate the horizontal grain boundary, so to attain columnar grain structure and excellent performance of magnesium alloy. In this paper, Numerical simulation is carried out by orthogonal experiments in order to obtain the optimal process parameters according to the actual experimental device. Different process parameters are taken into account, including pulling speed, cooling time and cooling intensity. FEM (finite element method) is employed to calculate the temperature field and reached a straight shape of temperature gradient distribution which is conductive to achieve unidirectional solidification microstructure. PFM(phase field method) is adopted into the microstructure calculation. The microstructure obtained by PFM is in agreement with the actual pattern by the optical microscope observation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call