Abstract

The friction stir welding is a pioneering solid-state metal joining technique for producing high-quality joints in materials. In this article, Taguchi approach is applied to analyze the optimal process parameters for optimum tensile strength and hardness of welded dissimilar A6061 and A6082 alloys. An orthogonal array of L9 is implemented and the analysis of variance is employed to investigate the importance of parameters on responses. The experimental tests, conducted according to combination of rotational speed, tool tilt and types of tool pin profile parameters. The results indicate that the rotational speed is most significant process parameter that has the highest influence on tensile strength and hardness, followed by tool pin profile and tool tilt. The optimum results verified by conducting confirmation experiments. The predicted optimal value of tensile strength and hardness of dissimilar joints produced by friction stir welding are 267.74 MPa and 80.55 HRB, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.