Abstract

In this paper, we introduce an agent rescue scheduling approach grounded in proximal policy optimization, coupled with a singularity-free predefined-time control strategy. The primary objective of this methodology is to bolster the efficiency and precision of rescue missions. Firstly, we have designed an evaluation function closely related to the average flying distance of agents, which provides a quantitative benchmark for assessing different scheduling schemes and assists in optimizing the allocation of rescue resources. Secondly, we have developed a scheduling strategy optimization method using the Proximal Policy Optimization (PPO) algorithm. This method can automatically learn and adjust scheduling strategies to adapt to complex rescue environments and varying task demands. The evaluation function provides crucial feedback signals for the PPO algorithm, ensuring that the algorithm can precisely adjust the scheduling strategies to achieve optimal results. Thirdly, aiming to attain stability and precision in agent navigation to designated positions, we formulate a singularity-free predefined-time fuzzy adaptive tracking control strategy. This approach dynamically modulates control parameters in reaction to external disturbances and uncertainties, thus ensuring the precise arrival of agents at their destinations within the predefined time. Finally, to substantiate the validity of our proposed approach, we crafted a simulation environment in Python 3.7, engaging in a comparative analysis between the PPO and the other optimization method, Deep Q-network (DQN), utilizing the variation in reward values as the benchmark for evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.