Abstract

As nucleic acid (NA) technologies continue to revolutionize medicine, new delivery vehicles are needed to effectively transport NA cargoes into cells. Uniform and length-tunable nanofiber micelleplexes have recently shown promise as versatile polymeric delivery vehicles for plasmid DNA, however the effects of several key parameters on micelleplex transfection and stability remain unknown. In this work, we compare poly(fluorenetrimethylenecarbonate)-b-poly(2-(dimethylamino)ethyl methacrylate) (PFTMC-b-PDMAEMA) nanofiber micelleplexes to nanosphere micelleplexes and PDMAEMA polyplexes, examining the effects of complexation buffer, the temporal and serum stability of nanofiber micelleplexes, as well as the effects of cell density, cell type, and polymer DPn upon transfection efficiency and cell viability. These studies are vital for understanding the formation and biological activity of micelleplexes in more detail and should inform the future design of more advanced polymeric NA delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.