Abstract

We investigate the reassembly techniques for utilizing fine graphite particles, smaller than 5 µm, as high-efficiency, high-rate anode materials for lithium-ion batteries. Fine graphite particles of two sizes (0.4–1.2 µm and 5 µm) are utilized, and the mixing ratio of the two particles is varied to control the porosity of the assembled graphite. The packing characteristics of the assembled graphite change based on the mixing ratio of the two types of fine graphite particles, forming assembled graphite with varying porosities. The open porosity of the manufactured assembled graphite samples ranges from 0.94% to 3.55%, while the closed porosity ranges from 21.41% to 26.51%. All the assembled graphite shows improved electrochemical characteristics properties compared with anodes composed solely of fine graphite particles without granulation. The sample assembled by mixing 1.2 µm and 5 µm graphite at a 60:40 ratio exhibits the lowest total porosity (27.45%). Moreover, it exhibits a 92.3% initial Coulombic efficiency (a 4.7% improvement over fine graphite particles) and a capacity of 163.4 mAh/g at a 5C-rate (a 1.9-fold improvement over fine graphite particles).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.