Abstract

The core of the present work was to model and optimize an environmentally friendly nanofiltration (NF) treatment process for two-phase olive-oil-washing wastewater (OOWW) valorization throughout the concentration and recovery of its phenolic fraction and the obtention of a purified permeate stream. For this objective, a factorial design was used for the optimization of the process. Results were interpreted by means of the response surface methodology. A statistical multifactorial analysis was performed in order to quantify all the potential complex conjugated effects of the input parameters in the NF process. The process was subsequently modelled by means of a second-grade quadratic fitting model equation. Finally, the parametric quality standards that permit to reuse the purified stream for irrigation, recycling or even discharge in-site reuse purposes were checked. To the author’s knowledge, no previous work on the optimization and statistical modelling of membrane processes for OOWW purification and valorization can be found up to the present. The optimized parameters for the proposed OOWW purification process – operating pressure of 26.5 bar, tangential velocity 32.7 m s−1, system temperature 35 °C and pH of 3.7 – ensured high and stable membrane flux (106.2 L h−1 m−2). The obtained optimized data are very relevant for the feasible scale-up of the proposed process in the mills, since the NF membrane (TFC polyamide/polysulfone, MWCO 300 Da) was highly efficient at ambient temperature conditions and raw effluent pH. The optimized conditions provided a permeate stream that could be reused for irrigation purposes and a retantate stream concentrated in volume up to 6.5 times, with a total phenolic content of minimum 1315.7 mg/L.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.