Abstract

Fouling of various Fe oxide particulates on heat transfer tubes in the coolant of the secondary system of a nuclear power plant has been known to reduce the heat transfer performance and degrade the integrity of system components. Thus, in order to mitigate such a fouling problem, an addition of polymeric dispersant has been proposed to remove the oxide partculates. In this paper, experimental studies was conducted for evaluating the effect of polymeric dispersants (PAA: Polyacrylic acid, PMA: Polymethacrylic acid, PAAMA: Polymaleic acid-co-acrylic acid) on the dispersion stability of magnetite nanoparticles (MNPs, Fe3O4) for the reduction of fouling and corrosion of carbon steel by the settling test, the transmittance, zeta-potential, and particle size measurements, and the electrochemical corrosion tests. It was observed that the critical concentration for maximizing the dispersionstability of MNPs was in the range of concentration ratio (dispersant/MNPs) of 0.1 to 0.01 and the dispersion-stability of MNPs was not improved when the dispersant concentration is above this critical value. This non-linearity above a critical dispersant concentration may be explained by the agglomerations between MNPs. While there is no significant increase of corrosion rate with an addition of up to 10 ppm PAA, the addition of 100 ppm PAA increases the growth rate of oxide layer rapidly and deteriorates the formation of protective oxide on carbon steel. It is thus reasonably stated that the optimization of polymeric dispersants variables and its impacts on the corrosion of structural materials is necessary for the best application at plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.