Abstract

Poly(methyl styrene-co-bis(p-vinylbenzyl)dimethylsilane)-based monolithic capillary columns were optimized for separation of low, medium, and high molecular-weight analytes. The morphology and consequently the chromatographic performance of these monoliths were tuned by changes in the volume-ratio of monomer to macroporogen, establishing good monolithic flow-through and retention pores. Two monoliths were prepared and analyzed by reversed-phase chromatographic separation of low molecular-weight analytes such as alkyl benzenes and β-blockers, as well as medium and high molecular-weight analytes such as peptides and proteins, respectively. The microstructure was studied by scanning electron microscopy (SEM), and by inverse-size exclusion chromatography (ISEC). Monolith 1 demonstrated a high retention of alkyl benzenes, which coeluted from the column at the washing step of absolute acetonitrile; yet this monolith established a baseline separation of 9-peptide and 8-protein mixtures. Monolith 2 demonstrated efficient separation of the three analyte groups of different molecular weights. Six alkyl benzenes and five β-blockers were base-line separated in less than 5 and 2min, respectively, with good resolution and very small values of peak width at half height. Moreover, a comparable performance of efficient separation of the 9-peptide mixture and a fast separation of 5- and 8-protein mixtures were achieved. Both monoliths were characterized by high mechanical strength, high permeability, and excellent reproducibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.