Abstract

Nitrophenols are toxic substances that present humans and animals with the risk of deformities, mutations, or cancer when ingested or inhaled. Traditional water treatment technologies have high costs and low p-nitrophenol (PNP) removal efficiency. Therefore, an ultraviolet (UV)-activated granular activated carbon supported nano-zero-valent-iron-cobalt (Co-nZVI/GAC) activated persulfate (PS) system was constructed to efficiently degrade PNP with Co-nZVI/GAC dosage, PS concentration, UV power, and pH as dependent variables and PNP removal rate as response values. A mathematical model between the factors and response values was developed using a central composite design (CCD) model. The model-fitting results showed that the PNP degradation rate was 96.7%, close to the predicted value of 98.05 when validation tests were performed under Co-nZVI/GAC injection conditions of 0.827 g/L, PS concentration of 3.811 mmol/L, UV power of 39.496 W, and pH of 2.838. This study demonstrates the feasibility of the response surface methodology for optimizing the UV-activated Co-nZVI/GAC-activated PS degradation of PNP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.