Abstract

Poly (D, L Lactic-co-Glycolic acid) (PLGA) is an FDA-approved polymer. It is distinguished from other biocompatible polymers by its feasibility of production and safety for intravenous cancer tumor targeting. Curcumin (CUR) is a natural molecule with versatile bioactivities including inhibiting the nuclear Factor kappa B (Nf-kB) levels in cancer cells, increased by chemotherapy agents. Our group previously reported a successful decrease in the p65 (RelA) subunit of Nf-kB using 125 µg/ml CUR loaded into PLGA nano-micelles. However, this amount was insufficient to reduce all Nf-kB subunits. This study aimed to increase the hydrophobic capacity of PLGA toward CUR using 1,2-Distearoyl-sn-glycerol-3-phosphoethanolamine (DSPE), an FDA-approved phospholipid. PLGA-DSPE hybrid nano-micelles (HNM) were prepared using two different methods, oil-in-water (OiWa) and film preparation-rehydration (FiRe). The encapsulated CUR was successfully increased to 250 µg/ml using the FiRe method. Physicochemical characterization of CUR-loaded HNM was performed using DLS FT-IR, DSC, and HPLC. In HNM with a size of 156.6 nm, DSPE, incorporated with all functional groups of PLGA, and CUR was trapped in the core of this structure. The release profile of CUR was suitable for targeted cancer therapy and the Encapsulation Efficacy was 92%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.