Abstract

Estuarine wetlands are often located in economically developed and densely populated estuarine deltas, which are frequently disturbed and threatened by human activities. Reclamation, as an important way to alleviate the demand for local land resources, can lead to habitat destruction of natural coastal wetlands and weakening of ecological service functions, including carbon sink capacity. Research has shown that poor plant growth and weakened carbon fixation were the main reasons for the reduced carbon sequestration in a reclaimed wetland. This study aimed to examine the impacts of plant management on the improvement or restoration of carbon sink function in Chongming Dongtan reclaimed wetland, located in the Yangtze River Estuary, China. A management pattern that could effectively enhance the carbon sink function of the reclaimed wetland was selected based on analyses of the effects of different plant harvesting and management patterns (no harvesting, harvesting without returning to the field, direct straw return, and charred straw return) on the plant growth, carbon fixation, and soil respiration, combined with whole-life-cycle carbon footprint evaluation from straw harvest to field return. Compared with no harvesting, the aboveground biomass of direct straw return and charred straw return increased by about 12.3% and 15.5%, respectively (P < 0.05). Simultaneously, straw charring released the least amount of CO2 (1.94 μmol m−2 s−1) and inhibited degradation of soil organic carbon through affecting its microbial community structure. Moreover, considering the carbon budget of different patterns, the charred straw return pattern also most effectively enhanced the carbon sink function and thus could be used for subsequent improvement of carbon sequestration in reclaimed wetlands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call