Abstract
The flying wing is a promising concept for the mid long-term commercial aviation. After the previously published conceptual design of a 300-seat class flying wing, the present article carries out a parametric analysis to optimize its planform and analyse the suitable cruise conditions to achieve the highest efficiency of such configuration. The figures of merit chosen for the optimization are the direct operating cost and the maximum take-off weight per passenger, for a specified constant range of 10 000 km. The design has to respect five relevant constraints: wingspan (limited to 80 m), cabin width, wing tip chord, number of passengers, and cruise lift coefficient. The optimum aircraft fulfilling all constraints cruises at 45 000–47 000 ft and M = 0.82, has an aspect ratio of 6.3 and taper ratio of 0.10, and carries about 280 passengers in three-class seating. This aircraft is about 20 per cent more efficient than conventional wide bodies of similar size, in terms of trip fuel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.