Abstract

This paper presents an optimization approach for the removal of lead ions (Pb+2) by nano-hydroxyapatite powder form adsorbents that were produced from bovine bone by mechanical activation method. The Taguchi method was implemented for designing the experiments by considering four controllable factors including (1) ball milling time (A), (2) the initial concentration of lead ions (B), (3) initial pH of the solution (C); and (4) the adsorbent dosage (D), each factor at four different levels. According to the ANOVA analysis results, the removal efficiency of the lead ions was predominantly influenced by the adsorbent dosage (38.2%) and the initial lead ions concentration (23.64%), whereas the effect of initial pH of the solution was ignorable and the ball milling time had a mild contribution of 14.79%. The total optimum adsorptive lead ions removal of 100% was achieved by optimization process at operating conditions of Co = 180 mg L− 1, ball milling time = 2 h, pH = 3, and adsorbent dosage = 0.15 g. The Langmuir isotherm model fitted to the equilibrium results with good accuracy and a maximum sorption capacity of 200 mg g−1 was predicted by the model for the hydroxyapatite adsorbent ball milled for 2 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.