Abstract

8 mol% Y2O3 doped tetragonal zirconia polycrystalline (8Y-TZP) ceramic nanopowders were synthesized via a novel modified sol-gel method employing zirconium carbonate basic as zirconium resources. The activated carbon as a dispersant was added to the precursor solution during the formation of the sol. The phase behavior, thermal decomposition, microstructure morphology, and electrochemical performance of nanopowders with the addition of activated carbons were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM), particles size distribution, and electrochemical impedance spectroscopy analysis (EIS). After adding the activated carbon, the average crystallite size of 8Y-TZP nanopowders decreased from about 53.16–33.51 nm when calcined at 900 ℃, and the 8Y-TZP nanopowders were produced loosely agglomerated. Meanwhile, compacts prepared by pressing the as-obtained 8Y-TZP nanopowders sintered to 98.8% relative density at 1600 ℃ and exhibited an average grain size of 0.89 µm, which brought a positive effect on ionic conductivity (0.079 S·cm−1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call