Abstract
Introduction. When growing tall-growth crops (cereal crops in late the phases of development, corn, sunflower, etc.), there are used boom sprayers equipped with twin-fluid spray cones with fixed angles of inclination to the vertical of the spray cones. The working fluid is applied with such sprays are more intensively on the front side of the plant leaves while the intensity of covering the plants from the back side with the working fluid decreases. The development of the spray system will allow improving the quality of crop treatment with boom sprayers. Aim of the Study. The aim of the research is to determine experimentally the algorithm for changing the angles of inclination of a twin-fluid spray cone that provides the same intensity of applying working liquid to the leaves of high-growth plants. Materials and Methods. The research was carried out on a test bench by applying colored water to the front and rear sides of a tall-growth plant model moving at a specified speed. The experiment was carried out according to the method of optimal planning. The difference between the content of droplets on the front and rear sides of the tall-growth plant model was taken as an optimization parameter. Variable factors were the spray cone inclination angles and the operating speed of the sprayer. Results. The algorithm for changing the optimum values of the spray cone inclination angles depending on the sprayer speed was determined based on the equality of the first derivative of the optimization to zero parameter by the value of these angles. Discussion and Conclusion. According to the algorithm, when the sprayer operating speed increases from 1.2 to 3.2 m/s, the optimal angle of inclination to the front spray cone vertical changes linearly from 25 to 21 degrees, and the rear one ‒ from 46.7 to 57 degrees. This algorithm will allow justifying the technical specifications to develop a processor for automatic control of the spray cone inclination angles cones when the sprayer is operating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.