Abstract

Tissue Engineered Vascular Graft (TEVG) is a promising treatment for cardiovascular diseases because of its potential for repair and long-term patency. However, the quality and preparation time to achieve a mature TEVG has limited its use in clinical settings. Both of these factors can be improved by effectively growing TEVGs with a uniform and high cell density, which is currently limited due to the diffusion limit of oxygen and nutrients. In this paper we propose a novel optimized microchannel geometry in TEVG wall model that facilitates uniform oxygen transport within a simulated TEVG with high cell density. In order to model the oxygen mass transport incompressible Navier-Stokes, convection, and diffusion equations were solved numerically. Furthermore, to model oxygen consumption in the graft domain, Michaelis-Menten kinetics were coupled with the oxygen diffusion equation. Finally, an optimized model was yielded such that nearly four times the cell density can be sustained by using the proposed microchannels design compared to a simulated TEVGs with a solid wall. In addition, to minimize the oxygen gradient along the graft, multiple segments are added to microchannels and their locations along the microchannels are optimized. We believe these simulated results can help guide the design and fabrication of optimized TEVGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.