Abstract

Oligonucleotides are commonly analysed using one dimensional chromatography (1D-LC) to resolve and characterise manufacturing impurities, structural isomers and (in respect to emerging oligonucleotide therapeutics) drug substance and drug product. Due to low selectivity and co-elution of closely related oligonucleotides using 1D-LC, analyte resolution is challenged. This leads to the requirement for improved analytical methods. Multidimensional chromatography has demonstrated utility in a range of applications as it increases peak capacity using orthogonal separations, however there are limited studies demonstrating the 2D-LC analysis of closely related oligonucleotides. In this study we optimised OGN size and sequence based separations using a variety of 1D-LC methods and coupled these orthogonal modes of chromatography within a 2D-LC workflow. Theoretical 2D-LC workflows were evaluated for optimal orthogonality using the minimum convex hull metric. The most orthogonal workflow identified in this study was ion-pair reversed phase using tributylammonium acetate (IP-RP-TBuAA) coupled with strong anion exchange in conjunction with sodium perchlorate (SAX-NaClO4) at high mobile phase pH. We developed a heart-cut (IP-RP-TBuAA)-(SAX-NaClO4) 2D-LC method for analysis of closely related size and sequence variant OGNs and OGN manufacturing impurities. The 2D-LC method resulted in an increased orthogonality and a reduction in co-elution (or close elution). Application of a UV based reference mapping strategy in conjunction with the 2D-LC method demonstrated a reduction in analytical complexity by reducing the reliance on mass based detection methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.