Abstract
- This study addresses the problem of training deep learning models with limited datasets, a significant challenge in sectors like medical imaging and food quality analysis. To tackle this issue, generative adversarial networks (GANs) will be employed to augment the available data and improve model performance. An innovative approach is introduced here, integrating semi-supervised learning and generative modeling to maximize the use of small datasets in developing robust models. The method involves reversing the conventional distribution of training and testing data to focus on model evaluation and generalization from limited samples. Wasserstein GANs (WGANs) and Semi-Supervised GANs (SGANs), are utilized to supplement datasets with synthetic but realistic examples, enhancing the training process in scenarios of data scarcity. These techniques are applied in the context of visible reflectance spectroscopy to analyze tomato sauces, demonstrating the method's effectiveness in non-invasively assessing key quality parameters such as oil content, °Brix, and pH. The results show significant improvements in model performance metrics: for %Oil content, overall accuracy increased from 0.47 to 0.66; for °Bx, it rose from 0.65 to 0.71; and for pH measurement, accuracy improved from 0.43 to 0.62. These outcomes highlight the model's improved capability to generalize and maintain accuracy with limited data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.