Abstract

In this paper we study the effects of In concentration, temperature, quantum well width and carrier density on optical gain for GaSb/InxGa1-xSb/GaSb untrained quantum well structures. This system was chosen as it is useful in infrared emission, finally, we introduce the optimum structure of quantum well to obtain the maximum optical gain, at room temperature and infrared emission particularly 2.3 (μm), for the use this structure in application of spectroscopic analysis of the gases specially CH4. This structure can be used for light absorption to increase the solar cell efficiency a based on a quantum well and multi-junction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.