Abstract

Bio-oil production from rice husk, an abundant agricultural residue, has gained significant attention as a sustainable and renewable energy source. The current research aims to employ artificial neural network (ANN) and support vector machine (SVM) modeling techniques for the optimization of operating parameters for bio-oil extracted from rice husk ash (RHA) through pyrolysis. ANN and SVM methods are employed to model and optimize the operational conditions, including temperature, heating rate, and feedstock particle size, to enhance the yield and quality of bio-oil. Additionally, ANN modeling is utilized to create a predictive model for bio-oil properties, allowing for the efficient optimization of pyrolysis conditions. This research provides valuable insights into the production and properties of bio-oil from RHA. By harnessing the capabilities of ANN and SVM, this research not only aids in understanding the intricate relationships between process variables and bio-oil properties but also provides a means to systematically enhance the production process. The predictive results obtained from the ANN were found to be good when compared with the SVM. Several models with different numbers of neurons have been trained with different transfer functions. R values for the training, validation, and test phases are around 1.0, i.e., 0.9981, 0.9976, and 0.9978, respectively. The overall R-value was 0.9960 for the proposed network. The findings were considered acceptable, as the overall R-value was close to 1.0. The optimized operational parameters contribute to the efficient conversion of RHA into bio-oil, thereby promoting the use of this sustainable resource for renewable energy production. This approach aligns with the growing emphasis on reducing the environmental impact of traditional fossil fuels and advancing the utilization of alternative and environmentally friendly energy sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.