Abstract

Organic waste generation has increased massively around the world during the last decades, especially the waste produced by the olive-growing industry. In order to manage the waste accumulation, composting process is an appropriate biotechnological solution which allows the waste organic matter biotransformation into a useful product the “compost”, used as an amendment for agricultural soils. The classical composting process presents several disadvantages; the major difficulty is to find the best feedstocks proportion to be used, leading to a final C/N ratio ranged between 12 and 15, a neutral pH, a humidity between 40% and 60% and organic matter (OM) content of 20–60%, at ambient temperature. Consequently, an accurate optimization of the composting process is needed for predicting the process parameters progress. To optimize these parameters and the waste rates initially mixed, the multiple regression method was used to determine the compost final parameters values, referring to the initial mixture of the different waste types. The best model filling the required standardized values included 49% of olive mill wastewater, 19.5% of exhausted olive mill cake, 15.5% of poultry manure, and 16% of green waste. This combination provides a pH of 7.5, a C/N ratio of 12.5 and an OM content of 44%. Such modelization would enshorten the composting required time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.