Abstract

Optimizing compilers for object-oriented languages apply static class analysis and other techniques to try to deduce precise information about the possible classes of the receivers of messages; if successful, dynamically-dispatched messages can be replaced with direct procedure calls and potentially further optimized through inline-expansion. By examining the complete inheritance graph of a program, which we call class hierarchy analysis, the compiler can improve the quality of static class information and thereby improve run-time performance. In this paper we present class hierarchy analysis and describe techniques for implementing this analysis effectively in both statically- and dynamically-typed languages and also in the presence of multi-methods. We also discuss how class hierarchy analysis can be supported in an interactive programming environment and, to some extent, in the presence of separate compilation. Finally, we assess the bottom-line performance improvement due to class hierarchy analysis alone and in combination with two other “competing” optimizations, profile-guided receiver class prediction and method specialization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.