Abstract

Methane oxidation was carried out in presence of synthetized Pt/Al2O3–CeO2 catalysts with ceria contents between 1 and 37 mol%, at 823 K, 52,000 h−1 of GHSV, by varying the oxygen concentration from a deficient concentration respect to methane (1 mol:1 mol) up until a 100% excess over the stoichiometric (4 mol:1 mol). The catalysts were characterized by TGA, N2 sorption, XRD, TPR, UV–Vis, TPD-NH3, and ICP for elemental composition, while methane conversion was followed by gas chromatography. It was found that the optimum concentration of oxygen is the stoichiometric one, and, depending on the concentration of ceria in the catalyst, the operation window with defect and excess of oxygen is different. Particularly, at the highest concentration of ceria in the catalyst, the conversion of methane is greater than using other catalytic materials, and this behavior was attributed to the higher concentration of surface ceria, greater oxygen mobility as well as the synergistic ceria-alumina-platinum effect toward hydrocarbon oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.