Abstract

Accurate presumptive and confirmatory test use for forensic body fluid identification is essential for gaining contextual information for crime scene investigators. Loop-mediated isothermal amplification (LAMP) is an ideal method for forensic body fluid identification because it is highly specific and generates multi-sized amplicon DNA, and successful amplification results can be read out colorimetrically. Here, we show preliminary data on a LAMP method that rapidly identifies body fluids including venous blood, semen, and saliva, based on colorimetric response and image analysis. The method is designed for easy implementation into forensic casework protocols with minimal disruption to DNA analysis. LAMP naturally increases target specificity due to the use of multiple primers for one target and mRNA targets were used for tissue and human specificity. With colorimetric detection as an inherent part of LAMP, samples that are positive or negative for any of the body fluids are readily identified by image capture and analysis, thus eliminating subjectivity. Results show by using the 3D-printed imaging system specific color ranges can be set for easy determination of body fluids. The resulting color change can be seen in <30min using a universal temperature and primer concentration for all body fluids. This simple method and imaging system allow for minimal hands-on time with objective image analysis and presents a pathway for creating a new potential method for forensic body fluid identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.