Abstract
We present new stellarator equilibria that have been optimized for reduced turbulent transport using nonlinear gyrokinetic simulations within the optimization loop. The optimization routine involves coupling the pseudo-spectral GPU-native gyrokinetic code GX with the stellarator equilibrium and optimization code DESC. Since using GX allows for fast nonlinear simulations, we directly optimize for reduced nonlinear heat fluxes. To handle the noisy heat flux traces returned by these simulations, we employ the simultaneous perturbation stochastic approximation (SPSA) method that only uses two objective function evaluations for a simple estimate of the gradient. We show several examples that optimize for both reduced heat fluxes and good quasi-symmetry as a proxy for low neoclassical transport. Finally, we run full transport simulations using the T3D stellarator transport code to evaluate the changes in the macroscopic profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.