Abstract

Major contributors to the road damage are Heavy Goods Vehicles (HGV), resulting in high maintenance costs of roads. This high cost makes it necessary to look into the issue seriously for minimizing the road damage. An Automobile Engineer can reduce road damage through the efficient design of a suspension system. The design involves satisfying the two conflicting criteria of riding comfort and vehicle handling with the restriction on the suspension travel. This paper involves designing an automobile suspension system, to improve the performance of the vehicle without a significant change in the cost of the suspension system and minimize road damage. To achieve the aforesaid objective, the use of a nonlinear passive suspension is suitable as compared to a linear passive suspension system. For the analysis, a HGV model of vehicle suspension has been considered. The suspension system considered for investigation comprises of a cubical nonlinear spring and a linear damper. Road damage has been represented by the fourth power of the tire dynamic load. A genetic algorithm has been used to optimize the half truck model to minimize road damage. The solution has been obtained using MATLAB and SIMULINK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call