Abstract

The positioning of the trapped bead and DNA’s stretching dynamics in the nonlinear optical tweezers are numerically simulated by finite difference method using general Langevin. From the performance of longitudinal position-pulling time curves of bead and evolution of forces controlled by average laser power, the trapping time, possible maximum stretched length, and laser intensity threshold of to broken DNA molecule are found. We also discussed the suitable conditions to avoid broken and overstretched states for longitudinally optical stretched DNA molecule. Finally, the optimized configuration of NOT for DNA molecules having different contour lengths is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call